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Geophysical Technigues and Applications —Non-Invasive Methods for Subsurface
Characterization and Interpretation

Friday, October 16, 2015

8:45 a.m. Registration (Coffee and Donuts provided)

9:00 a.m. Welcome and Introductions — (Bill Brab, KY-AIPG Past President)

9:10 a.m. Session 1 — The Role of Non-Uniqueness in the Application of Near Surface
Geophysics to Environmental and Engineering Applications
(Tom Brackman, Western Kentucky University/Cardno)

9:55a.m. Break

10:10 a.m. Session 2 — Reflection and Refraction Seismology: Concepts Review with Case
Histories (Edward W. Woolery, University of Kentucky/Kentucky
Geological Survey)

10:55 a.m. Break

11:10 a.m. Session 3 — Application of Downhole Geophysical Methods to Geotechnical and
Hydrogeological Investigations (Mark Smith, Cardno GLS)

12:00 p.m. Lunch Break (Barbeque buffet provided)

1:15 p.m. Session 4 — Electrical Resistivity Method for Karst Feature Investigation (Junfeng
Zhu, PhD, In-Situ)

2:00 p.m. Break

2:15 p.m. Session 5 — Electrical Resistivity Method for Marine Exploration (Thomas Brackman
on behalf of Markus Lagmanson, Advanced Geosciences, Inc.)

3:00 p.m. Closing Remarks — (Bill Brab, KY-AIPG Past President)
3:05 p.m. Field/Outside Demonstrations

4:30 p.m. Adjournment



THE ROLE OF NON-UNIQUENESS IN THE APPLICATION OF NEAR SURFACE
GEOPHYSICS TO ENVIRONMENTAL AND ENGINEERING APPLICATIONS

Thomas Brackman, Sr. Geophysicist; Research Faculty Western Kentucky University, Bowling
Green KY, nearsurfacegeophysics@yahoo.com

Speaker Bio: Thomas Brackman M.S., P.G., is a Geophysicist and Registered Professional
Geologist specializing in geophysics with applications to real world problems. Broad background
in seismology and near surface geophysics including cave and karst, environmental and
geotechnical arenas. Fifteen years of experience in owning and operating a personal business.
Eleven years of teaching and research experience in geology/geophysics at the university level.
Currently consulting for Cardno Inc., soon to be starting as Research Faculty at Western Kentucky
University. Proficient in the use of electrical resistivity, seismic surface wave techniques, ground
penetrating radar, magnetics, electromagnetics and gravimetric studies.

Presentation Abstract: Near surface geophysics has the ability to distinguish a diversity of
targets. Geophysical properties can be correlated to Geological properties and Engineering
parameters. Sometimes the geophysical properties correlate to multiple geological properties.
Enter Non-Uniqueness. Multiple methods can often be used to aid in overcoming multiple
solutions. We will look into the problem of non-uniqueness and multiple methods on how to solve
this problem. Multiple case studies involving horizontal directional drilling for pipeline installations,
detection of deep voids and seismic site classification will be covered.

REFLECTION AND REFRACTION SEISMOLOGY: CONCEPTS REVIEW WITH CASE
HISTORIES

Edward W. Woolery, Professor of Geophysics and Director of Graduate Studies, University of
Kentucky EES; Faculty Associate, Kentucky Geological Survey, woolery@uky.edu

Speaker Bio: Edward W. Woolery received undergraduate degrees in geology (BS, 1984) and
civil engineering (BSCE, 1996) from Eastern Kentucky University and the University of Kentucky,
respectively. His MS (1993) and PhD (1998) degrees were in Geological Sciences (Geophysics)
from the University of Kentucky. Ed’s career began as a geotechnical engineer and geologist for
the Louisville District U.S. Army Corps of Engineers before returning to the University of Kentucky
to begin the Geologic Hazards Section for the Kentucky Geological Survey. Currently, he is a
Professor of Geophysics and the Director of Graduate Studies in the University of Kentucky’s
Department of Earth and Environmental Sciences. Ed’s research bridges the interface between
geophysics and the engineering disciplines, primarily as a field-oriented experimentalist focused
on seismic hazards in general, and near-surface geophysical methods, ground-motion site
response, and neotectonics (active-fault assessment) in particular. Most research has been
concentrated in the central United States (i.e., New Madrid and Wabash Valley seismic zones),
but more recently along the northern edge of the Tibetan Plateau in western China.


mailto:nearsurfacegeophysics@yahoo.com
mailto:woolery@uky.edu

Presentation Abstract: Although a pure mathematical description of exploration seismology can
appear somewhat daunting, the basic conceptual physics for explaining the subject is remarkably
straightforward. Consider an area or point of earth material: if disturbed, the resultant
displacement energy is propagated outward from the source as an attenuating elastic wave until
it encounters a boundary separating material with contrasting elastic properties, wherein it
predictably partitions into refraction and reflection components. We review the spatial and
temporal consequences of this process for both P- and S-wave modes in the context of seismic
data acquisition, processing and interpretation, as well as highlighting potential pitfalls and
advantages using examples from geotechnical engineering, geological hazard assessment, and
petroleum exploration.

APPLICATION OF DOWNHOLE GEOPHYSICAL METHODS TO GEOTECHNICAL AND
HYDROGEOLOGICAL INVESTIGATIONS

Mark S. Smith, P.G, Sr. Geologist; Business Unit Manager - Mining, GLS, Engineering &
Environmental Services Division, Cardno GLS, mark.s.smith@cardno.com

Speaker Bio: Mr. Smith is a Professional Geologist with over 34 years' professional experience
in resource and mining geology, hydrogeology, borehole geophysics, and engineering
applications. At Cardno, he directs the geophysical logging division Cardno GLS, and performs
geologic and hydrogeological investigations, principally for the mining industry. Such studies
include assessments of probable hydrologic consequences of mining; evaluation of
hydrogeological, geochemical, and geotechnical conditions and their potential impact on mining
activities; and investigations of water quality and/or quantity impacts resulting from past
mining. His focus in downhole geophysics has been high resolution data collection and the
application to geotechnical evaluations and hydrogeologic studies, as well as mineral resource
evaluations.

Presentation Abstract: Modern high resolution geophysical logging tools have numerous
applications for geotechnical and hydrogeologic studies. Measuring fracture orientations and
understanding joint sets and rock strength parameters are critical components of slope stability
analysis, underground mine design, slope-shaft-tunneling design, as well as other types of
geotechnical investigations. Downhole geophysical logging tools such as acoustic televiewer,
waveform sonic, electromagnetic flowmeter, density, temperature, fluid conductivity and other
probes provide a cost effective method of obtaining the required data for geotechnical and
hydrogeologic investigations. Through properly located boreholes and the use of geophysical
logging it is possible to predict relative strength of strata, identify fracture patterns, locate weak
strata and water inflow and outflow zones for controlling water during excavation.

ELECTRICAL RESISTIVITY METHOD FOR KARST FEATURE INVESTIGATION

Junfeng Zhu, PhD, Water Resources Section, Kentucky Geological Survey,
Junfeng.zhu@uky.edu



mailto:mark.s.smith@cardno.com
mailto:Junfeng.zhu@uky.edu

Speaker Bio: Dr. Junfeng Zhu received his B.S. and M.S. degrees in Hydrogeology from Nanjing
University, China and his PhD degree in Hydrology from University of Arizona. He is a senior
hydrogeologist with Kentucky Geological Survey, University of Kentucky. He is also an adjunct
faculty member in the Department of Earth and Environmental Sciences, University of Kentucky.
His research focuses on groundwater dynamics, hydrogeophysics, karst hydrology, and remote
sensing.

Presentation Abstract: The electrical resistivity method is a common geophysical technique
widely used in investigating geological features in the shallow subsurface. This method detects
variations of electrical resistivity of earth materials through applying electric currents to the
subsurface and measuring electric potentials on or below the ground. In this lecture, | will first
introduce the basic principles of the method with a focus on clarification of common
misconceptions and briefly present the procedures of conducting surface electrical resistivity
surveys in the field. Then, | will spend the majority of this lecture to give examples on applying
the method in studying water-related environmental issues in Kentucky, including investigating
groundwater sources for public water supplies, monitoring soil moisture changes in agriculture
fields, and understanding movements of contaminants in karst environment.

ELECTRICAL RESISTIVITY METHOD FOR MARINE EXPLORATION

Thomas Brackman (on behalf of Markus Lagmanson, Advanced Geosciences, Inc.), Sr.
Geophysicist; Research Faculty Western Kentucky University, Bowling Green KY,
nearsurfacegeophysics@yahoo.com

Use of 2D Electrical Resistivity in marine applications will highlight case studies including
optimizing placement of horizontal well screens for water well intakes for the Florida
Oceanographic Societies Marine Park, mapping of geology adjacent to seawalls adjacent to a
waterfront canal system, determine dep to bottom in lacustrine environments, and investigation
of a planned utility tunnel stretch between the mainland and Fisher Island in Miami, FL.
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About the American Institute of Professional Geologists (AIPG) and the Kentucky Section
of American Institute of Professional Geologists (KY-AIPG)

The American Institute of Professional Geologists (AIPG) is a nonprofit organization
that was founded in 1963. It is the largest association dedicated to promoting geology as a
profession. It presently has more than 7,000 members in the U.S. and abroad, organized into 36
regional sections.

The purpose of AIPG is promote and certify the competence and ethical conduct of
geological scientists in all branches of geosciences with members employed in industry,
government, and academia.

AIPG emphasizes competence, integrity and ethics. AIPG is an advocate for the
profession and communicates regularly to federal and state legislators and agencies on matters
pertaining to the geosciences.

The Kentucky Section of AIPG (KY-AIPG) was founded on November 10, 1967 in
accordance with the Bylaws of the Institute. It presently has more than 140 members including
Certified Professional Geologists (C.P.G.'s), Professional Members, Young Professional
Members, Students, and Associates.

KY-AIPG hosted the 24" Annual Meeting of AIPG in Lexington, KY in 1987. Approximately
225 members and guests attended the 1987 Annual Meeting.

Several members of KY-AIPG were instrumental in a successful effort to lobby and
observe the passage of the Professional Geologist Registration Bill in the Kentucky General
Assembly in 1992. As of 2013, there were more than 1,500 persons registered to practice geology
in Kentucky, however, only 500 of these reside within the Commonwealth.

Several members of KY-AIPG were instrumental in a successful effort to lobby and
observe the passage of the Geologist-in-Training Bill in 2005.

KY-AIPG hosted the 42" Annual Meeting of AIPG in Lexington, KY in 2005.
Approximately 250 members and guests attended the 2005 Annual Meeting.

KY-AIPG initiated an Outreach Program in 2008 to promote public awareness of the
geological sciences. The Program was initially vested in free public lectures and oral debates by
Kentucky Professional Geologists or invited guests on topics of Global Warming, Climate Change,
and Geologic Hazards. The annual Darwin Lecture Series, promoting lectures on evolution and
geologic history delivered by distinguished guests, was inaugurated in 2009, and continues to
date. Professional Development Conferences began in 2010 to provide low-cost technical
workshops and short courses to upgrade the knowledge base of geoscientists.

For more information about AIPG membership categories, requirements, and application
forms, visit the AIPG website at: http://aipg.org

For more information about KY-AIPG events, meetings, and other links to field trip
guidebooks, presentations, and short courses, visit the KY-AIPG website at: http://ky.aipg.org
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THE ROLE OF NON-UNIQUENESS IN THE APPLICATION OF NEAR SURFACE
GEOPHYSICS TO ENVIRONMENTAL AND ENGINEERING APPLICATIONS

Thomas Brackman, Sr. Geophysicist; Research Faculty Western Kentucky University, Bowling
Green KY, nearsurfacegeophysics@yahoo.com

Speaker Bio: Thomas Brackman M.S., P.G., is a Geophysicist and Registered Professional
Geologist specializing in geophysics with applications to real world problems. Broad background
in seismology and near surface geophysics including cave and karst, environmental and
geotechnical arenas. Fifteen years of experience in owning and operating a personal business.
Eleven years of teaching and research experience in geology/geophysics at the university level.
Currently consulting for Cardno Inc., soon to be starting as Research Faculty at Western Kentucky
University. Proficient in the use of electrical resistivity, seismic surface wave techniques, ground
penetrating radar, magnetics, electromagnetics and gravimetric studies.

Presentation Abstract: Near surface geophysics has the ability to distinguish a diversity of
targets. Geophysical properties can be correlated to Geological properties and Engineering
parameters. Sometimes the geophysical properties correlate to multiple geological properties.
Enter Non-Uniqueness. Multiple methods can often be used to aid in overcoming multiple
solutions. We will look into the problem of non-uniqueness and multiple methods on how to solve
this problem. Multiple case studies involving horizontal directional drilling for pipeline installations,
detection of deep voids and seismic site classification will be covered.
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Non-Uniqueness
GEOPHYSICAL METHODS
Applications for Engineering
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Near Surface Geophysics Is a set of tools.

Ground Penetrating Radar
Electromagnetics
Magnetics
Electrical Resistivity
Gravity
Seismic

It completes the picture.
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Non-Unigqueness

The rigorous mathematical label of non-
unigueness can lead to the erroneous
Impression that no single interpretation in
d geological sense is better than any other
interpretation (Saltus 2011).

Nearly all results in the earth science are
subject to uncertainty because of
Incomplete and imprecise data.

You will' perform: better as an exploration
geophysicist if you are a good geologist

(Burger)



Non Unigueness
Measuring Geophysical
Properties of the subsurface

Geophysical properties - S

T0
Geological properties . ——

Can mere than ene geoloegical
property be attributed to one
geophysical property?




Physical Properties Measured

Velocity of P and S waves, Surface Waves
m Seismic

= Radar

Electricall Impedance

s Electromagnetics

m Res|stivity

Magnetic

s Magnetics

Density.

= Gravity



Electrical Resistivity.

Injects current into ground
Measures resultant veltage
Water and Ions

Think what conducts electricity.

Sand? Hardrock?
Silt? Igneous?.
Clay? Karst?
limestone? Fluvial?

Cave? Lacustrine?
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Be Aware

May need to use multiple methods.
Boreholes are the best check.

Know your geology.

Put together a team and interpret together
Geologist

Geophysicist

Engineer




Seismic Methods

Uses acoustic eneragy.

Refraction - Determines velocity and
thickness ofi geologic beds

Reflection - Maps geologic layers and bed
topography.
Surface Waves MASW, ReMi
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Ground Penetrating Radar.

Transmits and receives electromagnetic
energy.

Maps geology.
L.ocates cultural targets
Has very high resolution



Noggin
Ground Penetrating
Radar Unit

Mala Geosciences
Ground Penetrating
Radar Unit




Geophysical Methods
Advantages

Non-intrusive

Rapid data collection
Detects a variety ofi targets
Screens large areas

Fillsiin data gaps



Correct Interpretation




Geophysical Methods
Limitations

Methods reguire a specialist

Interpretations are nen-Unigque
= Forward Modeling
= Inverse Modeling

May be expensive

Physical contrasts must exist

Resoelution varies by method and' depth; of target
Noise



Problematic Interpretation




Case Studies
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Subsurface Exploration Tools

2:1 vertical exaggeration
ine9 Pit cave Location on surface
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Rippability
Seismic Refiraction used to determine Rock: velocity
Refraction blind to low: velocity zones

ReMiisees reversals

Shear Wave Velocity and Poisson's ratio Vp
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Shear modulus can be determined once VS is
known.

Assessment of load-bearing capacity,
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Ground behavior under continuous and
prolonged vibration,

Ground amplification and liquefaction potential

Shear-wave velocity (VS) is the best indicator of
stiffness

Used as an important criterion in the design of
building structures.
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3D Resistivity Contour Plot
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REFLECTION AND REFRACTION SEISMOLOGY: CONCEPTS REVIEW WITH CASE
HISTORIES

Edward W. Woolery, Professor of Geophysics and Director of Graduate Studies, University of
Kentucky EES; Faculty Associate, Kentucky Geological Survey, woolery@uky.edu

Speaker Bio: Edward W. Woolery received undergraduate degrees in geology (BS, 1984) and
civil engineering (BSCE, 1996) from Eastern Kentucky University and the University of Kentucky,
respectively. His MS (1993) and PhD (1998) degrees were in Geological Sciences (Geophysics)
from the University of Kentucky. Ed’s career began as a geotechnical engineer and geologist for
the Louisville District U.S. Army Corps of Engineers before returning to the University of Kentucky
to begin the Geologic Hazards Section for the Kentucky Geological Survey. Currently, he is a
Professor of Geophysics and the Director of Graduate Studies in the University of Kentucky’s
Department of Earth and Environmental Sciences. Ed’s research bridges the interface between
geophysics and the engineering disciplines, primarily as a field-oriented experimentalist focused
on seismic hazards in general, and near-surface geophysical methods, ground-motion site
response, and neotectonics (active-fault assessment) in particular. Most research has been
concentrated in the central United States (i.e., New Madrid and Wabash Valley seismic zones),
but more recently along the northern edge of the Tibetan Plateau in western China.
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Presentation Abstract: Although a pure mathematical description of exploration seismology can
appear somewhat daunting, the basic conceptual physics for explaining the subject is remarkably
straightforward. Consider an area or point of earth material: if disturbed, the resultant
displacement energy is propagated outward from the source as an attenuating elastic wave until
it encounters a boundary separating material with contrasting elastic properties, wherein it
predictably partitions into refraction and reflection components. We review the spatial and
temporal consequences of this process for both P- and S-wave modes in the context of seismic
data acquisition, processing and interpretation, as well as highlighting potential pitfalls and
advantages using examples from geotechnical engineering, geological hazard assessment, and
petroleum exploration.
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Reflection and Refraction Seismology
Concepts Review with Case Histories

KY-AIPG 2015 Professional Development Conference

Geophysical Techniques and Applications — Non-invasive Methods for Subsurface Characterization and Interpretation

October 16, 2015
Lexington, Kentucky

Edward W. Woolery, University of Kentucky

UK

Nt s
College 'of Arts & Sciences
Department of Earth &
Environmental Sciences




Geophysics

“The physics of the Earth, Moon, and planetary bodies”

Quantitative spatial and/ ...physical processes
or temporal analysis of... and/or properties

Solid Earth Geophysics Atmosphere/ Astrophysics...
“Physics of the Earth’s interior HYdrOSphere

(land surface to inner core)”

g

Pure/Global Applied

Geophysics Geophysics

“Study of the whole or substantial “Investigation of the Earth’s crust and near-

parts of the Earth” surface to achieve a practical (often economic) objective

eApplication of geophysical methods to investigate subsurface materials &
structures that are likely to have significant societal implications.
eApplication of geophysical methods to investigate near-surface physio-
chemical phenomena that are likely to have significant implications for
the management of the local environment. v“w L UK




Geophysical Measurements

> Passive methods. detect
variations within the natural
fields associated with the
Earth (i.e., gravitational,
magnetic, & electrical
fields).

> Active methods. those
using artificially generated
“signals” that are modified
by the materials through
which they travel; the
altered signals are measured
by appropriate detectors
whose output is displayed
and ultimately interpreted.

. Property Property
Geophysmal Measured at Investigated
Technique Earth's Surface | within Earth
Natural Source: > Seismic Velocity (V)
Earthquake 'g - and Attenuation (Q)
O §85§
= g Refraction ;0 £ 2 Seismic Velocity (V)
(2] = 5 83
— ) 2 E g
LI 3 R
(V)] = 5 I g Acoustic Impedance
£ | Reflection % Q (Seismic Velocity, V,
S Q and Density, p)
o
- . Gravitational )
< Gravity . Density ()
I: 0 Acceleration (g)
Z m
= Magnetic
g T _ Strength and Susceptibility (x)
@ Magnetics Direction of and Remanent
L. Magnetic Field (F) | Magnetization (Jram)
Geothermal Thermal
e Conductivity (k)
HEAT FLOW ; and
Gradient (JT/z) Heat Flow (q)
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Geophysical Measurements

Saturated clay

Resistivity contrast Velocity contrast
substantial

© minimal

Saturated sand

Resistivity contrast ~ Velocity contrast

C T T T T L T T T T T R T T TR L B ]

minimal A.H.i‘-ﬁi‘\-hﬂ}.hﬁﬁhﬁﬁﬁﬁﬁﬁhﬁﬁsubstanﬂaj
AAoA

P . ) o T T T
) . i 'l - Y F . " .
L~~~ ~ + Fractured bedrock -, N
F.Y ) Fal = P " s Ll Cal ™ " e 2 s . )
T . . s M W L M ) L
Y . ) Fa Y - . & M~ Cal F M Fal s ) s
F u .9 . el " e Fal wy o Y u o o~ " ]
PO ) L s M ) P s ] F FeY (R s ]

. T R T T T . T T TR T T T . T T ]

eMatch methods to application.
= Physical properties
= Resolution

" ‘M.Ln. b
L e



Seismic Exploration: General

b oo e~ le Furmtad)
b e e e =

—=15=| Earth Section

Seismic Section (===

«Amplitude -Lithology
*Frequency *Depth

*Time Structure
Phase Itis the.elastic pr_operties of the «Depositional
-Coherency/ .rock/son and their con.trasts that environment
Pattern influences the correlation success

u'_“w.“._ . UK
Lo
-




e\Waves are moving disturbances of media particles in which wave is
traveling

eQur interest is in disturbances that are small and temporary...the
rock/ soil “bounce back” after wave passes (i.e., elastic!)

DN A RN
Before During After W-

o
L



Waves in Solids
Mechanical Wave Genesis

Hooke's LaD @tcnrs anD
)= [5J) P
ot?

@ve EQUatD

—VVa) —VVS

82_

il b . UK
Lo e
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Seismic Exploration: Body Waves

Primary Wave (P-wave)

Compression / Dilation Undisturbed Medium
4+—0—) =P
4
- > 4
Wavelength Ap
K+-G

Direction of Wave Propagation

- analogous to sound waves, i.e., individual particle motion is parallel to direction

of travel.

- travel as volumetric change thru solids and fluids. w
\

Uk



Seismic Exploration: Body Waves

Secondary wave (S-wave)

Undisturbed Medium

p——

. ~————

———

e
——

/

L SV-wave

|<Wavelength k:l SH-wave ‘/I}' y G

Direction of Wave Propagation

s =

P

ecause elastic shearing/shape deformation as they travel thru material.
eparticle motion is perpendicular to the direction of wave propagation.
edivide direction of particle movement into 2 components: SV and SH

.......
vvvvv



Seismic Exploration: Surface Waves
Rayleigh Wave

Undisturbed Medium

1 LA 77 T B S 5 77
~ NS i
|~ N ~_ 1"
T~ i Re ~d —
— > -
| \
< -
Wavelength Ay
V 0.92 Vs

Rayleigh

Direction of Wave Propagation

*Produced from P- and SV- interaction
®Both vertical and horizontal motion




Seismic Exploration: Surface Waves
Love Wave

Undisturbed Medium

1

S |

1l
1

B .

Wavelength A

Direction of Wave Propagation V ~ V
Love S

* Horizontal motion only

* Surface wave acting like a SH-wave W



Seismic Exploration: Seismic Waves Summary

Receivers X==

= Wavefronts for P.S, & R Poi # 8
propagating across R-array

which is set @ 1 distance from

source Distance From Source (X) ——

1 2 3 4 5 6

: : r(!ii"" e — | Seismic Traces
=Travel time seismogram; e | 5 oreach of
traces are plotted as fnc of c| == =T*= Ground Miotion (Ampliude)
i N . 1
S—R distance g = P o o
= : S
g = g 3
*NOTE: £ — 85 Lo
: X
*No impedance boundary @ N ol Lo
encountered % 23 §
No attenuation considered \E 58 2
= ‘ High ___Q::
 Dispersion Range i s




Seismic Waves: Summary

eorth's surfoge
—— e

= \.»..

i

[ |
- Sorr
H= Hoe

—

reflection
and refraction
coefficients

Mo Hy
R = — - =
1 HO 2 Hy
n geomelrical spreoding
Hy
H=—
¥

Summary:
= Earth is filter (i.e., it turns impulse signal into series of vibrations on
seismogram)

= Consists of 4 processes
® Conversion of impulse wavelet w/in source zone
® Partitioning of wavelet into succession of wavelets by reflection/refraction
@ boundaries (e.g., R.Cs and T.C's); Zoeprittz and Knott equations
govern waveform properties (amplitude, phase, etc.)
® Wave direction governed by Snell’s Law
® \Wave energy loss governed by geometrical spreading and absorption
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Waves in Solids
Preview:
¥ =0 %
| >

Source Recelver

Direct wave

Velocity V4

Critical Refraction Velocity v,

X 2/1,1

g = — + —— €O%¢
Vo V) ‘ :
" JlL‘:"T";
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)
-

/I
\Slope = 1/V,

™~

A

this area

No refraction
arrivals in

Slope = 1/V/

< (sw)ounp,

Seismic Refraction

y Geehons

10

Intercept time =¢;

Distance (m) ———

T s

>

N

V2= 4500 m/s

V,>V,




eismic Refraction

TRACE 5 10 15 20 25 30 35 40 45 TRACE 5 10 15 20 25 30 35 40 45

Ll

;! ’.vi‘)"- N
’ :'|:[?'T ol |
Ml

b ccetttl i

? _—
E £
= =
& £
l\lnllh.. ’
TRACE 5 10 15 20 25 30 35 40 45 TRACE 5 1015 20 25 30 35 40 45
10
51 Output motion
& 127 mis — 1 "
5 181 m/s
o 1-D Transfer
-— _10 - .
g Function
15 RISHRE SHAKE91
-20 '\_—/— _A,.W.WMAW»«WI‘M{ MMWMWMW
-25 1 1333 m/s Input bedrock motion
'30 Ll 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 4
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Seismic Refraction

Refraction:

Limitations |

"By Snell’s Law, no critical refraction @
662,,

=

)

4
3

arrival time (1)

|

|

l

P |

ot |

- |

=Obtain smaller refraction angle |
|

I
|
|
l
|
|
I
|
|
l
[
|

| |

1 | 1 | |

=No eVidenCG Of“2” on X—t’ but rays 0 source - receiver distance (x)
S

to/from deeper boundaries must pass thru w\vjm\ e 72;//1/;/&

=Result is distortion in T;; ¢ incorrect
depth calcs. s

sCANNOT be corrected for!

=The low-velocity zone called “blind zone”




Seismic Refraction

Refraction:
Limitations II (con’t) I TS
«If only 1%t arrivals are recognized, then [ —-- =20 % ) % |
layer “3” is called a “hidden layer” i 3 ///’/ % \fl /
*So, depth calculation is INCORRECT.  * | -~ « |
|
*Phenomenon can also result from v. PR
large velocity contrasts (i.e., small E S S S
critical angles @ deeper refractors create __s -

steep ray paths, and therefore small X.

\V/ /%

NP
7

= // \a\\%\/\
4

NS S S S

n

=

b

4
=Check for “blind zones” or “hidden f
i

S

layers” by using reflected waves, where
only physical limitation is resolution
(function of ).

. Sl
g L

NS



Time (millisec)

Seismic
Reflection

\ 4

<4—— (Geophones

TRACE 5 101520 25 30 35 40 45

’("; —
E £
0 N
£ £
Multiple :
)
: %)
el ) )m,g» it
53* ’"L? i i
s ’e"’ “‘ '*-'lll ) .J'f i \ﬂ?
i N i)
by {?|;|,$ 1:,?.”' /) I[.':"l ,).' ) l ! “
7001.’4_'.1.\_LJ¢L_[_.'_U' u'mm T 700! '-'l" l' !
TRACE 5 10 15 20 25 30 35 40 45 TRACE 5 10 15 2'0 25 30 3540 45

Distance —
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Seismic Reflection

CMP
ePrincipal difficulty w/ reflections is often recognizing weak signal.

eCommon practice to enhance weak pulse called multifold reflection
surveying (i.e., combining many reflections from same pt. on reflector —
called “common-mid-point”, CMP or “common-depth-point”, CDP).

eReflections come from different source-to-receiver spacings; therefore,
must apply NMO correction before seismogram traces appear equal.

eOther, “obscuring” waves are NOT adjusted to equal times.

eTherefore, summing traces are ENHANCED, and others destructively
Interfered.

eThis process of adding NMO adjusted traces is called : Stacking

b




Seismic Reflection
X. CMP

Distance (m)
| z| Ei % % -
£
| :
v L >
S :
Q >
g
Y ] %’
Gys Gy Gas Gy Gss G{uE
E, E, E, Gy Gy rsav Gy Gs, Gea
\' ‘ ;
N
N

CDP for gather

Ly

2l
e Lo



X. CMP

Time (ms)

Seismic Reflection

l Distance (m)

—

CDP for gather

eExtract traces from “field files”

ePlace in a new file called a “gather”




X. CMP

Seismic Reflection

ePerform NMO correction:

At

eSuUM traces; signal enhanced,

and “noise” (not necessarily the
“coherent noise,” however.
Stacked
trace
S

2
VRMS

_l‘O

S, S. S, S, S,
G|
B2 bbby
=
T
=
T

|__Corrected __|

traces
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Seismic Reflection

X. CMP

= Multi-channel schematics
of subsurface sample points
from various shots and
geophone locations are
called ““stacking charts.”

Ne AG
2eAS

Fold =

where, N = no. geophones
AG = group interval
AS = shot interval

e+ LR ® T TV S
o ~N o v bW
® ~ o v b
m ~ o w

oooooooo
--------
--------
--------
........

S, 1
s, S5 3
s, S 5
R,
S, 2
S 4 4
5 Sz 3 6




Instrumentation




Seismograph/Geophone/

Instrumentation
Takeout Cable
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Instrumentation:
Seismic Energy Sources

1. Impulsive

b 3

Al (it



Instrumentation: Seismic Energy Sources
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Instrumentation: Seismic Energy Sources

2. Non-impulsive (or controlled source)
a. Vibroseis = known vibration series imparted and returned; during
the vibration, which can range between a few seconds to >30 sec.,
frequency can (will) vary.
I. One sequence of vibration = “sweep”
Il. Use process called “correlation” to produce equivalent pulses
of short duration

beginning ending
frequency frequency
v

upsweep

downsweep

<—— sweep time




Instrumentation: Seismic Energy Sources

b. Psuedo-Random Vibration

*Human controlled, pseudo-
random “sweep”

*No repeated frequencies —
Impact rate must be varied.

*Base plate decoupled from
ground

*Portable and Inexpensive




Instrumentation: Seismic Energy Sources

a. BENEFITS
i. No mode conversions at boundary

refracting and reflecting
boundaries (unlike P or SV)

N /
7 ’
\‘ - )
7 /A ‘\" ™ 4
N ~s o,
7 %,) i~ oS 4
7’ ~ ~N (‘\QI :" NN
L% % N
s & oS
X /"’ :
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boundary 4N
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Instrumentation: Seismic Energy Sources

SYNTHETIC P- WAVE SYNTHETIC P- WAVE SYNTHETIC S- WAVE

REFLECTION PROFILE REFLECTION PROFILE REFLECTION PROFILE
(DRY SAND LENS) (SATURATED SAND LENS) (DRY OR SATURATED SAND LENS)
= T B> =3 =
| 11
o J JJJJ ‘ JJJ 4j
SATURATED SAND i Mﬂ»— = —M» mn ff f 'f } } }% a4
F mmmn e 1% ~.J
DRy 4. J)?)))')?)))))?)!J) z)))ﬁ ez zpz)!)) wzfzzz??zzz)p’ e
g‘,_:‘gk‘(}’gg ";“fgfgmo NI SR Y\\__%%%S iS N - /Z!’J)Z!!!!J)!Z)Z)!!JJJJP
_ T 51 RE 433 s s amnn RS
DD~ ! 02
SATURATED SAND M I {1
e e | il I [[]] I I‘ J
CLAY e ’II: },J’J}e“u_ 2204 -‘? IJ : l
BEDROCK (1 S (i (T 395508 .
TERLREATRA st KRR
RESPONSE OF VERTICALLY
INCIDENT P- AND S- WAVES (ABOVE)
e TO A GEOLOGIC MODEL CONTAINING
{Feen) AN UNCONFINED AQUIFER AND A
v ane CONFINED SAND LENS (LEFT)
o I e s TR e A T AR e Y e
- D S
100

GEOLOGIC MODEL AT LEFT

USED TO DERIVE SYNTHETIC
SATUPATED Si SEISMIC SECTIONS ABOVE
NOTE THAT THE SAND LENS IS
____________ POSTULATED TO BE BOTH
e S S L e S ey FOR THE P- WAVE CASE
SEDROC

ii. Framework waves (i.e., not affected by water saturation); therefore

sample the low-velocity geologic/particulate medium W

Uk



Instrumentation: Seismic Energy Sources

P- Wave O S- Wave
214.5 | 175 135

B

iii. Although one-halfto 1/3 ,_
the frequency of P-wave,
have velocities 5 to 10
times less; therefore

0.2—
resolution improved by a 7 -
factor of 2 to 3 R P G TS B S D S RA
- =
0.3—
=
e ————————————
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Instrumentation: Seismic Energy Sources
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Instrumentation: Seismic Energy Sources

P-wave velocity Optimum recording Optimum recording S-wave velocity
(m/s) window window (m/s)
l_J_I A
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High—Resotutionr Geophysical Characterization

of a Complex Near-Surface Geological
Environment — PGDP

KRCEE Quarterly Meeting

May 24, 2012
Lexington, Kentucky
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Department of Earth and Environmental Sciences




Seismic Methods
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Seismic Methods Historically @ PGDP
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Maore Recent Seismic Methods @ PGDP
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More Recent Seismic Methods @ PGDP
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More Recent Seismic Methods @ PGDP

11 Wee

v
EY
[
E!
=
00e 008 oor #3902
Fweter 001 0
L |
Lm0
Wy
LRED]
T —— 181
—"F'Q:ﬁb'-‘l“.‘—_-':_ﬂir:_ﬂ“‘
L ; .80
fikofTvm &L
s — --q_‘_sl"'”\a.a;_':_—."u:‘..nur- “""" —r g
Wru-ﬂ-‘r‘":———w“”" """-—-m-“"l aqp- i, 020
‘\“ i ‘Ir""_‘dwﬂ"' '“Mn.._...,.i-l'@" - e ol
e ok m-’"
"""'"“"" "ln-: pr "l“"'= e, ! gy e - L0
'\lulf .—F‘ll"""k-,' B i e Imm_JIUMN‘P" o g { il o
.2”'”’ .‘ﬂ“‘"’r A o T
-.-.:--.E-_-‘_“-'—“""" il AT ™ e L e 1
TR s ':i-'l-'f.'.,...uuz{"""‘”_'f;. e M
—-;ﬁﬁ'”"w“dﬂ'm'_.r::“.“"" - .u..;rfw e -""" b ..ﬂ"--w- T et _,lﬂ_b‘}.‘:..;""-_ fean
= .r—_..m-- e e _.r; _.,“ . -.....ra ....‘ B Tl |::‘f T .
i ﬂr"'“ —— "“m“""i!'irw“ i mﬂ'z" B mxb"-"—“ ':.N..T nThn
- i ik w 7] w n n L ] - - - - - '
g 8 &8 &5 ¥ 3 3 3 [ T I Y S E T

" Lt o
Wit T .
o



More Recent Seismic Methods @ PGDP

(a) fault of interest
North

— 1 South
725 675 625 575 525 475 425 375 325 275 225 175 125 75 25
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Depth (m)
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(Woolery and Almayahi, 2013)




Most Recent Seismic Methods @ PGDP

TME (s

Q 100 meters




Most Recent Seismic Methods @ PGDP

TIME (me)
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Most Recent Seismic Methods @ PGDP
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Continued Seismic Processing Progress

CMPs ﬁs 50 7% 1T0

TIME (ms)
(sw) awIL
Time (ms)

Seismic data processing. A) Profile C1_S processed with VISTA 11
B) Profile C1_S processed with SPW
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SH-wave Velocity and Electrical Resistivity
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Axial Profile

Permanent
Pool 712.0

1

Cl
/|
I Alldium

I >

Gravel, Sand
I Till

& Boulders
ChertylLimestone

Dolomitic Limestone
Limestone

1
50+00

1
45+00

1
40+00
Stations

T T
35+00 30+00 25+00




(o@siyiw) swiy

o
»

..p.\).)».,....b.‘,,}_{x._» o B - BB aa A A
r)...f)fif.ar...,)\.ﬂ \ ..w.f“(\)f\’,,,x,M\r.)‘).) ‘“,.,P
: \ e AR e s
\ ,,r),\l»’,.tv A
>y .{)KDQ),{_) A
1.)\).\) ) o

i m MDA

! 2/ \p
. f}lr!f)\c». \i-<\', /,’; )

o i.b.).‘.F.‘. ALAK \},\l_.\ L PSP
e A/)'l e A - },,\\;( P Y

v Y Y 3"
e g A i b

afnen g A n o M i, M
nen gl MR m A ALV L pak gl
opmn A A A e A :F__i W 3'..,_..,,- LAk 1!

N " \/ )(\).\D‘l,\’r\L.,.b,)\».‘.),},\?‘;..htr N _.

P /, ,J).),.).\P,&.P,..rr.?)/(lrh,\.\,b, g
,..B sbk .l i.)..‘i..}k,,\..,»...t..,,...r/

Qp :

Y .)_,,v.%\.; A

+——Geophones =——>

e
Ll

Distance —

Energy Source

G

Pre-stack
Field File

Refraction

Reflection

Reflection




Milliseconds

100

200

300

400

500

600

Stacked CMP Profile

q",b
b"\xa ) N\ ! O Q
Q N N
Q » 2 N SN ) » Q » Q
OJQx b,‘\x Q:t :3& b‘Qx n;\x 'bq:‘ rbe ‘i\x q?x
é@' 2 %\’b %\'ﬂ" (N4 O}"b G_}"b 6\_@ s 6@'
| 700| G(I)O | 500| I 400| 3?0 I 200 | 10|0| |
g™ 0 g i CHESESERIementy " " M - T A TS |
I\ m u”l (.:IY W H‘ |H|H|} qM il _H‘|. L U‘ M, ‘ TN JUUIUH | W Hl '|%y|.w,‘_lllllll " 1 i Jibs mHHl M‘IIUI bl i Iyig! “"'"1|“|“‘!‘_[‘I‘ ‘\l‘;\:‘\\ll \,\FI\J_ M II”;?L}}L ;‘M‘H.




Elevation (ft)

800 7
780 -
760 -
740 -
720 A
700 -~
680 -
660 -
640 -
620 -

Subsurface Comparison

< >| Dam Crest
Area of crest settlement

Seismic-
Reflection

Borings

/

Bedrock anomaly

600

[ [ 1 1 1 | | | | | | 1 [ [ [ [ 1 1 | | | | | | | | [ )

Station (ft)

Vertical Exaggeration 6.4X




Elevation (m msl)

Subsurface Comparlson

237 - Gravel, Sand
& Boulders
Outlet Works
225 =
Permanent
Paol 217m
213- ) L1-&Al 1' .
Clay . I
201 %@ Q (LA 1 ] cremifimesione
Ny
189 = \ \\\ %} Dolomitic Limestone
Limestone
T T T T T 1
50400 45+00 40+00 35400 30400 25+00

Stations

Engineered Fill/Matural Soil Interface
Anomalous Lift ?
\ Sand body

e

-

Colluvium /Till lmarface

- *-“_\ /

g

X Clay boaq ‘

LR — Karst feature

Old t‘hannel Bedrock Uﬁtonfonnity
\ gt

Dutlet Works

Return to top




APPLICATION OF DOWNHOLE GEOPHYSICAL METHODS TO GEOTECHNICAL AND
HYDROGEOLOGICAL INVESTIGATIONS

Mark S. Smith, P.G, Sr. Geologist; Business Unit Manager - Mining, GLS, Engineering &
Environmental Services Division, Cardno GLS, mark.s.smith@cardno.com

Speaker Bio: Mr. Smith is a Professional Geologist with over 34 years' professional experience
in resource and mining geology, hydrogeology, borehole geophysics, and engineering
applications. At Cardno, he directs the geophysical logging division Cardno GLS, and performs
geologic and hydrogeological investigations, principally for the mining industry. Such studies
include assessments of probable hydrologic consequences of mining; evaluation of
hydrogeological, geochemical, and geotechnical conditions and their potential impact on mining
activities; and investigations of water quality and/or quantity impacts resulting from past
mining. His focus in downhole geophysics has been high resolution data collection and the
application to geotechnical evaluations and hydrogeologic studies, as well as mineral resource
evaluations.

Presentation Abstract: Modern high resolution geophysical logging tools have numerous
applications for geotechnical and hydrogeologic studies. Measuring fracture orientations and
understanding joint sets and rock strength parameters are critical components of slope stability
analysis, underground mine design, slope-shaft-tunneling design, as well as other types of
geotechnical investigations. Downhole geophysical logging tools such as acoustic televiewer,
waveform sonic, electromagnetic flowmeter, density, temperature, fluid conductivity and other
probes provide a cost effective method of obtaining the required data for geotechnical and
hydrogeologic investigations. Through properly located boreholes and the use of geophysical
logging it is possible to predict relative strength of strata, identify fracture patterns, locate weak
strata and water inflow and outflow zones for controlling water during excavation.
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mailto:Junfeng.zhu@uky.edu

Application of Downhole
Geophysical Methods to
Geotechnical and

Hydrogeological Investigations

Presenter: Mark S. Smith, P.G.
Phone: 304 809 0574
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Geophysical Logging

Common Applications of Geophysical Logging

Mineral Exploration — Coal, Limestone, Aggregates, Uranium, Metal Ores, Other
Minerals, and Oil and Gas. (Two types of logging probes, standard oil and gas
and “Mineral Logging” probes)

Groundwater - Environmental Site Investigations- Hydrogeology: Water
Supply, Contaminant Site Investigations, Mining Industry, Municipal Wells,
Residential

Geotechnical — Surface Mining Highwall Design, Underground Mining or
Tunneling - Rock Mass Evaluation, Foundation Studies, DOT- Road cuts,
Undermining, Deep Soil Moisture-Density Studies,.

Miscellaneous Applications - If a boring or well is drilled in rock for any reason,
we can provide geophysical logging to enhance understanding of the geology,
mineralogy, hydrogeology, geotechnical or other aspects of the site.

Q’3 Cardno
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Geophysical Logging

Cardno Geophysical Logging Units A4WD Pickup Truck or Van

P |

B.C?
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High Resolution Geophysical Logging Probes

Acoustic Televiewer — Optical Televiewer =
> Image Borehole side wall, sound or light

> ldentifies fracture and bedding location
and orientations —Dip angle and direction

Natural Gamma Ray

> ldentifies changes in lithology — recorded
with most all other logs

Gamma-Gamma Density

> Density of formations, for lithology,
mineral exploration, mining, coal
reserves, etc.

Neutron
> Porosity, hydrocarbons, water saturation

Q’j Cardno
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‘ High Resolution Geophysical Logging Probes

Sonic - Waveforms, P wave and S wave travel times

> Estimation of rock strength for mining, geotechnical.

> Elastic modulus properties of rock mass, fracture effects,
porosity, etc.

Caliper

> Measures hole or casing diameter, fractures, washouts, soft
strata, holes in casings, mine voids, etc.

Temperature/Fluid Conductivity/SP

> Fluid movement, water bearing fracture indicator.

> Hydrogeology and groundwater movement - applications for
mining, geotechnical studies, environmental site
assessments, contaminant migration, etc.

Q’j Cardno
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‘ High Resolution Geophysical Logging Probes

Electromagnetic Flowmeter
> Measures vertical fluid movement within a boring or well

> Under ambient conditions to measure natural flow —
determine upward or downward vertical gradients

> Under pumping conditions to measure relative flow rates
from different formations or fracture locations in a well

Drill hole deviation (magnetic or gyroscope oriented)
> Maps drill hole direction/hole location X-Y-Z

Induction/Resistivity Logs

> Measures conductivity/resistivity of formation- open
hole or inside PVC cased wells

Q’j Cardno
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High Resolution Geophysical Logging Probes

Downhole Video Cameras

> Several cameras for use in 2-inch holes up to 30+ feet
diameter vertical shafts

> Water inflows, casing inspections, lithology,
geotechnical, gas inflow, lost probes or drill steel, offset
in wells due to mining subsidence, anything you can
imagine

> Up to 5000 feet depth, downhole and side views, high
resolution, low light settings for mine works, voids

Q’j Cardno
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Coal and Mineral Exploration - Hydrogeology




‘ Geophysical Logging Application Examples

Acoustic Televiewer Logging for Slope Stability
Assessment of Open Pit Copper and Limestone Mines

Sonic and Density Logging for Rock Strength
Parameters — Deep Mine Roof Rock Assessment

Comprehensive Logging Suite for Deep Rock Tunnel
Geotechnical and Hydrogeologic Assessment

Neutron and Density Logging for Bridge Settlement
Investigation—Moisture/Density of Soils and Fill

Foundation Study for Urban High Rise Building near
Subway Tunnel

Q’j Cardno
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Geophysical Logging Methods
for Rock Slope Stability Assessment

1
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Acoustic Televiewer Log

Acoustic

GAMONAT) T Depth AMPL Apparant Dip True Dip

TeIeVIewer 0 CPS QDO' AL T 90 180° 270* 0* 0 90° 160° e [ : : | | v'm'
Log Image ‘

—_

Interpreted
Fractures-
Projection

in angled hole ——

Tadpole
Plot —True Dip _
corrected for
hole angle and
direction.

e e
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Geotechnical:
Open Pit Mine Slope Stability Assessment

Gather data from aerial views and
from the ground within the pit —
where safell

Then select drill hole locations,
angles and orientations for optimal
joint set intersections

Q’j Cardno’
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"Cardno Borehole Geophysical Logging

- Acoustic Televiewer Log and Data

Hole Number 1 XYZ Compan
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Discontinuity Data/Stereonet Assessment

Symbol  DATA SOURCE Quantity
4-21-2015 Ske Visit 10
ATV Dita from MGT-1 28
ATV Daka from MGT 2 164
ATY Data from MGT-3 181
June 2015 Field Mapping 16
MGT- ) elte ol exposure L]
Coler Density Concentr
o0 - 1.2
120 - 24
240 160
360 4.80
480 6.00
(1] 1.2
120 b4
R40 .60
o850 1080
10.80 12.00
Maximum Density | 11.96%
Contour Data | Pole Vedors
Comtowr Distribution = Fisher
Counting Circle Size | 1.0%
Plot Mode | Pole Vectors
Vector Count | (07 (607 Entries)
Hemisphere | Lower
Projection | Lqud Ares

DO
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Discontinuity Data/Stereonet Assessment

_Svmbol _feature
Pale vectors
= Critcal e e tion
inematic Anabysin | veioc 8
Shope Dip | T
Slope Dip Dircction | 245
Friction Aseghe | 207

Coftical | Total | %
wenal el WS-
Wedpesiding! & | & oM
BRI V.Y EW v
Vector Counl | 706 (2796 Fririm)
+
Intersaction Mode  Moan et Aanes
_ Intewvertioes Count | 45
Hombghare | Lowey
Projection  Lgus Aves

Example of Analysis for
Wedge Sliding Potential
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Stereonet Plots of ATV data for Geotech Analysis

ON-01-13 &

ON-02-13 +

ON-03-13 ©
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Stereonet Plot of ATV data for Geotech Analysis
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Sonic Log / Waveform

Sonic Log
Sonic Waveform
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‘ Geophysical Logging

+ City of Atlanta Water Tunnels for Transporting
Freshwater from Chatahoochee River to Hemphill Water
Treatment Plant and then to Abandoned Quarry for Water
Storage

- Two Legs, approximately 4 Miles from the river to the
treatment plant and 2 Miles from the plant to the
guarry/reservoir. Four vertical shafts, one on each end.

« 250 to 600 feet in depth from surface.

* Purpose of investigation was a combination of
geotechnical and hydrological data collection to identify
problematic areas, any issues to be resolved and to be
used for final design and selection of construction
methods.
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Acoustic and Optical Televiewer Logs
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Cardno Borehole Geophysical Logging - Composite

Log for Deep Rock Tunnel Project in Atlanta, GA
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Cardno Borehole Geophysical Logging - Composite

Log for Deep Rock Tunnel Project in Atlanta, GA

GAM{NAT) Depth AMPL Image-Hm MNear Sonic Shear Velocity TEMP RES RATE GFM

0 cPs 300 1288.1°0° ggr 1g0* 270° O° 0° 90° 180° 270° 0° 100 600 5000  FTISEC 25000 64  DEGF 66 O OHM 3000 -1 1
CALIPER #1 DELTAT P-BHC Velocity DEL TEMP SP COND
" |
2 INCH 5 0 90° 180° 270" O ‘0 USEC/FT 260 5000  FTSEC 25000 -0 DEGF 04 215 USICM 230

Shear Travel Time

USECHFT 200

~ |Downhole fibw |

H

er putflow

gone

Pt

D cardno

Shaping the Future



Cardno Borehole Geophysical Logging - Composite

Log for Deep Rock Tunnel Project in Atlanta, GA
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' Neutron and Density Log for Bridge Settlement

Investigation—Moisture/Density of Soils and Fill

The Pennsylvania Department of Transportation (PennDOT) along with
Cardno designed a drilling and logging program to investigate subsurface
conditions at several locations where bridge abutment settlement was
taking place.

Cardno was contracted to perform geophysical logging of steel cased
borings with both density and neutron logging probes in the fill material and
natural soils in the vicinity of several bridges.

The goal was to derive the moisture - density relationship for the fill and soil
materials at each location from near surface down to the bedrock horizon.

Steel casings were installed using a casing advancer by the drilling
contractor, and split spoon samples were collected for moisture content
analysis at various intervals within each boring.

Each cased boring was logged by Cardno for natural gamma, neutron and
density inside the steel casing as it was completed.

Q’3 Cardno
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Neutron and Density Log for Bridge Settlement

Investigation—Moisture/Density of Soils and Fill

The density curve was calibrated using two calibration jigs constructed
with known density material outside pieces of the actual steel casing used.

Calibration curves to convert the raw neutron data to moisture content were
developed by linear regression analysis of the raw neutron counts and the
reported moisture contents of the laboratory analysis of samples.

The resulting formulas were used to create an Apparent Moisture Content
curve by applying each calibration curve to the raw Neutron counts.

y=-0.018x+21.296
e R-square is 0.5962

o~ oo
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Neutron and Density Log for Bridge Settlement

Investigation—Moisture/Density of Soils and Fill
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Log plots were developed for
each boring showing the
natural gamma curve,
apparent density curve, raw
neutron counts, and apparent
moisture content curves.
Density and moisture content
curves are labeled as apparent
density or apparent moisture
content, as these were logged
through the steel casing and
are not compensated for any
conditions, such as washouts,
that may occur outside the
casing.
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Neutron and Density Log for Bridge Settlement
Investigation—Moisture/Density of Soils and Fill
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'Sonic and Acoustic Televiewer Logs for High Rise

Foundation Study Adjacent to Metro Subway Tunnel

Planned High Rise Building

Load Bearing Caissons

Drillholes

Ground Surface

—

<— Subway Tunnel in Bedrock
Top of Bedrock Surface

Fracture Orientations from ATV Log
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Sonic and Acoustic Televiewer Logs for High Rise
Foundation Study Adjacent to Metro Subway Tunnel

d F) o m— p———— = )
] N
il B 3 _- { I PTH 55.535_{.“-" 10324
s -l 315 ¥ :
- : s PR R AN '
irenE 2L Ll i E Y = = —
% \ £ - 3
: 3. S R ; ;
< N AD i & —
. e ! - ) e
o ' |
2.5 { ~ T
w™
d 4 b = - =
o e g 5
. S
{

ﬁﬁﬁﬁﬁﬁ

vvvvvvvvv

QF) éardna”

Shaping the Future



Sonic and Acoustic Televiewer Logs for High Rise
Foundation Study Adjacent to Metro Subway Tunnel
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Cardno Borehole Geophysical Logging — Case Study

Washington, DC - Northern Maryland

Multiple deep core borings were drilled and logged to characterize the geotechnical,
hydrogeologic and other bedrock characteristics at several sites for deep tunneling.

Determine geotechnical conditions and physical properties of the rock mass

Cardno collected a suite of geophysical logs that included acoustic televiewer,

density, neutron, caliper, full wave sonic, normal resistivity, temperature, fluid

conductivity, and borehole deviation. These parameters allow identification of fractures and
orientations (joint sets and preferred groundwater flow paths), rock strength indices, elastic
modulus, zones of groundwater movement and other physical characteristics of the
metamorphic rocks.

The work took place in congested urban and security sensitive areas with multiple
Government agencies, other consultants, and contractors involved in the projects

Cardno staff have extensive training, and are proficient in cooperating with multiple
contractors and agencies, and meeting the multiple challenges associated with working in this
type environment.

Utilization of large amounts of data to characterize the sites

Cardno assisted site project managers with data interpretations: presentation of the
geophysical data was done in various graphic formats to enhance the utilization of the data in
understanding site geology and geotechnical and hydrogeologic characteristics.
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' Cardno Borehole Geophysical Logging — Case Study

Superfund Site - Ground Water Contaminants

The Chemtronics Superfund site is a 1,027-acre parcel located in Swannanoa, North
Carolina. Ground water contaminants include volatile organic compounds, semi-volatile
organic compounds and heavy metals. Cardno has logged more than 50 bedrock wells at this
site from 200 to 500 feet deep over several years of drilling and site evaluation.

Determine hydrogeologic conditions and groundwater flow paths

Cardno collected a suite of geophysical logs that included acoustic televiewer, flowmeter,
caliper, sonic, resistivity, borehole video, temperature, fluid conductivity, and borehole
deviation. These parameters allow identification of fractures orientations (preferred
groundwater flow paths), zones of groundwater movement, vertical gradients and other
characteristics of the complex metamorphic geology and fractured rock aquifer.

Utilization of large amounts of data to characterize the site

Cardno assisted the project managers with data interpretations: presentation of the
geophysical data was done in various graphic formats to enhance the utilization of the data in
understanding the complex setting.
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' Cardno Downhole Video Cameras
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ELECTRICAL RESISTIVITY METHOD FOR KARST FEATURE INVESTIGATION

Junfeng Zhu, PhD, Water Resources Section, Kentucky Geological Survey,
Junfeng.zhu@uky.edu



mailto:mark.s.smith@cardno.com
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Speaker Bio: Dr. Junfeng Zhu received his B.S. and M.S. degrees in Hydrogeology from Nanjing
University, China and his PhD degree in Hydrology from University of Arizona. He is a senior
hydrogeologist with Kentucky Geological Survey, University of Kentucky. He is also an adjunct
faculty member in the Department of Earth and Environmental Sciences, University of Kentucky.
His research focuses on groundwater dynamics, hydrogeophysics, karst hydrology, and remote
sensing.

Presentation Abstract: The electrical resistivity method is a common geophysical technique
widely used in investigating geological features in the shallow subsurface. This method detects
variations of electrical resistivity of earth materials through applying electric currents to the
subsurface and measuring electric potentials on or below the ground. In this lecture, | will first
introduce the basic principles of the method with a focus on clarification of common
misconceptions and briefly present the procedures of conducting surface electrical resistivity
surveys in the field. Then, | will spend the majority of this lecture to give examples on applying
the method in studying water-related environmental issues in Kentucky, including investigating
groundwater sources for public water supplies, monitoring soil moisture changes in agriculture
fields, and understanding movements of contaminants in karst environment.
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Electrical Resistivity Method
for Karst Feature Investigation

Dr. Junfeng Zhu
Kentucky Geological Survey
Email: junfeng.zhu@uky.edu

Phone: (859)323-0530
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Ohm’s Law:

R="
I
V: voltage (\Volts)

| current (Amperes)
R: resistance (Ohms)

Resistivity vs Resistance:

Area (A)

_____d

™~ 7

Length (L)

L
R=p—
P A

p. resistivity (Ohm-m)

Intrinsic property of materials



Resistivity Ranges of Common Materials

Rock/material type:
Alr

Igneous
Limestone
Sandstone
Gravel

Sand

Clay

Soil

Ground water
Sea water
Copper (native)

Resistivity range (Qm):
Infinite

100 — 1,000,000

100 — 10,000

100 — 10,000

100 — 10,000

1-1,000

1-100

1-10,000

0.5-300

0.2

0.0000002



Resistivity of soil and rock Is affected by:

1) Water content, a dominant factor (resistivity

decreases with Increasing water content)

2) Dissolved electrolytes

3) Porosity

4) Temperature of pore water (resistivity
decreases with increasing temperature)

5) Resistivity of minerals




Electrical Current in the Subsurface

——— [/nes of current Flow
— £quipotential lines

(Dobrin, 1976)



Electrical Current in the Subsurface

B: high resistivity

 Electrical resistivity
describes how well a
material resists the
flow of electrical
current.



A Sandbox Experiment

| H -
 Cylinders Embedded in Sand

|

Transmitter |
N = . | Sandbox

e

A. Kruger, W. llman, S. Yang (University of lowa), T.-C. Jim Yeh and J. Zhu
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Estimated Resistivity: Mysterious Objects
s o

13.4 326 51.8 71.0 90.2 109.4 Q-cm

Y (cm)

o Transmitter "
Receiver &
Multiplexer
P ~ Sandbox

v

—

o

UIIII5III'1'0'II'1'5'II'2'0'II'2'5'II'3'0
X (cm)



Apparent Resistivity

i
0,

AlM N B
A I 4
o . -
s 2 |
s - >

3

(http://geophysics.ou.edu/enviro/electric/)

Apparent resistivity can be seen as a weighted average of the different
resistivities in the subsurface affecting the readings. If the subsurface is

homogeneous the apparent resistivity equals the true resistivity. In reality,
the subsurface is always inhomogeneous.




Resistivity T Induced Polarization

Courtesy of Advanced Geosciences, Inc.

Wenner, highest signal to noise ratio,

excellent vertical resolution but poor later
resolution, unable to take advantage of multi-
channels (only a single channel is used).

Schlumberger, AB/2 is 5 times more than
MN. It is similar to Wenner array. Unable to
take advantage of multi-channels (only a single
channel is used). Inverse Schlumberger may
use up to four channels.

Dipole-dipole, best resolution but poor
signal to noise ratio. The best way to ensure
an acceptable signal to noise ratio is to
maintain n <= 8. This array is excellent for
multi-channel instruments.



Resistivity T Induced Polarization

P, =2m(Nn +1)a¥

Pole-dipole, AB > (5*AM) for less than
5% error. Stronger signal than that of
dipole-dipole, good resolution, but difficult
handling of the infinity electrode in the
field. The inverted resistivity image may
be asymmetric.

Pole-pole, AB > (20*AM) and

MN > (20*AM) for less than 5% error.
Very strong signal, good resolution, but
difficult handling of two infinity
electrodes. A large MN may pick up plenty
of cultural, SP and telluric noise.

Courtesy of Advanced Geosciences, Inc.



ER Data Collection Scheme &Display

AGI SuperSting Administrator - version: 1.3.5.215 - [SS Command Creator]

&' File ‘Window Language Help x
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ER Data Collection Scheme &Display
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Depth (m)

ER Data Collection Scheme &Display

AGI SuperSting Administrator - version: 1.3.5.215 - [SS Command Creator]
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Electrical Resistivity (ER) Field Survey

ER Meter

Battery
Switch Box

Cable layout

Depth (m)
-
3
L

Measured Apparent

Electrode
& cable

Measured Apparent Resistivity

Depth (m)
&
&

Inverted Resistivity Section  Iteration=3 RMS=1158% L[2=3327 Electrode Spacing=1m

Inverted Resistivity



Resistivity Imaging

Time for a survey:

28 Electrodes

56 Electrodes

84 Electrodes

Array # of Time Time # of Time Time # of Time Time
points SSR1 SS R8 points SSR1 SS R8 points SSR1 SS R8
Wenner 117 18 min 18 min 495 1.3 hr 1.3 hr 1134 3.0 hr 3.0 hr
Schlumberger, inv. 171 27 min 9 min 842 2.2 hr 37 min 1068 2.8 hr 48 min
Dipole-dipole 237 37 min 7 min 762 2.0 hr 26 min 1453 3.8 hr 57 min
Pole-pole 378 59 min 9 min 1540 4.0 hr 34 min 3486 9.1 hr 1.2 hr

® Calculated using 1.2 sec. measurement time and two stacks at each station

Courtesy of Advanced Geosciences, Inc.




ER Data Interpretation

The flow of a DC current through the earth can be described
by the following partial differential equation,

o [ 5"{] o av g av) _
G + G +—|o— [=1(X.y.Z).
ox\ oOx gyl oy oz\ 0z,

where V is the scalar electrical potential, o is electrical conductivity ( 1/ o is
electrical resistivity), and I(x,y,z) is the electric current source term.



ER Data Interpretation

Assuming resistivity is constant in y direction, the above
equation can be Fourier-transformed into a 2D equation to
reduce computing time,

E[D'EF 3 [D'mr —k'oV =—-I-6(x)-5(2).

—_
[E

_I_
o ax | oz

Where k is the wave number in the transform domain



ER Data Interpretation

The process is called data inversion.

An inversion process minimizes the difference between
observed data and calculated data. The process usually
consists of :

1. Given an initial guess of the ER field, run forward model (i.e.
the partial differential equation) to get the calculated data.

2. Compare calculated data to observed data. If the difference
doesn’t satisfy predefined stop criteria, the ER field will be
changed. Then go back to step 1.

Steps 1 and 2 are an iterative process. The process will stop
when the criteria are satisfied.



ER Data Interpretation
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ER Data Interpretation
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ER Data Interpretation
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ER Application

*Groundwater exploration
*Cave and tunnel detection
*Bedrock mapping

Sinkhole investigation

*Dam leakage

*Fracture detection

*Mineral exploration

*Road subsidence investigation
*Active fault delineation



Locate an emstmg cave
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A survey of the cave was made in 1965 by members of the Blue Grass
Grotto of Lexington (local chapter of National Speleological Society).
e Mapped passages totaled about 1,800 feet (550 meters)

Entrance

Clifton Cave

Woodford County, Kentucky
Brunton and steel tape survey, ca. 1965

Martin Traugett, Bill Andrews, Bill Weisenburgh,
Mickey Lambert, Gary Nipper

0 50 100 feet
— E—

Presenter O’Dell made a
single visit to the cave in 1968




Clifton Road today, area near former cave entrance
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e Georeferenced cave map and GPS used to estimate passage positions
e Resistivity transects made perpendicular to passages




Results for Target A

: R
&/
‘
o luuddl

Inverted Resistivity Section of the Line for Target A

e 1800 210.0 240.0 270. Ohm-m
- } - : ' 100000

11560

1336

Depth (ft)

g | High resistance suggests 154
" Meraton =8 RMS - 3.14% 12109 Flectrode Spacing - 10 — | void at about 20 ft depth




Results for Targets B & C

Transect across
pointsA & B
=410 ft

Survey indicated passages at B & C much deeper
Y than A because of upward slope of hillside and
| known downward trend of cave passage

Inverted Resistivity Section of the Line for Target B-C

0 40 80 120 160 200 240 280 320 360 400 Ohm-m
0.0 - . ! . 4 F— S E—— . - 16275
. | — — o — | — —
- L 3 B [
P 24.6 - - 2749
g - .
£ 493 = 464
3 B
o L
2 C
73.9 - - 78
98. - -
Iteration =8 RMS =3.09% L2=1.06 Electrode Spacing—=0-2

Possible voids at 70 and 60 ft




Locate a Karst Conduit

> Royal Spring services as the main R .
o . oyal Sprin

drinking water for City of y pring
Georgetown, Ky. g LT

.

» Water 1s degraded by pathogens,
nutrients, siltation, and organic
enrichment.




Nitrate-Nitrogen (mg/L)
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Nitrate Concentration in Royal Spring
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Date

Data source: Kentucky Groundwater Data Repository



Royal Spring Groundwater Basin
/Royal Spring

: o
QORGETOWN (g8
&)

Estimated___—
Conduit Path

Resistivity Field Site

Fault
------- Concealed fault
------- Estimated conduit path
(O~~ Royal Spring

Cane Run

mmm— |nterstates

Royal Spring Groundwater Basin

Alluvium
Upper part of Lexington Limestone
Tanglewood Limestone

Lower part of Lexington Limestone




Field Site

Sinkhole
Resistivity Line
msnm Estimated Conduit Fath

LJ,]:I Salt Injection Location

~
GEORGETOWNIEE

a2

Fault
====1== Concealed fault
==mi=nr Estimated conduit path
¢ Royal Spring

Cane Run
Interstates
| [ Royal Spring Groundwater Basin
Alluvium
Upper part of Lexington Limestone
Tanglewood Limestone

Lower part of Lexington Limestone

b=

Kentucky

Resistivity Field Site

©)

£

Zhu et al. (2011)



2D Electrical Resistivity Sections

Bl

Sinkhole
Resistivity Line

Estimated Conduit Path

L{,':l Salt Injection Location

Elevation (m)

Elevation (m)
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Electrode Spacing = 3.05 m

Zhu et al. (2011)



Quasi-3D Electrical Resistivity Sections

25 56 124 275 611 1357 30176707 Ohm-m

Zhu et al. (2011)



Drilling Result

Field site B1 with wells
(viewing from Northeast)




o
=

Elevation (m)

Drilling B1

" lteration=8 RMS=561% 12=350 CElectrode Spacing =3.05m

16: lots of water, broken rocks

!

17: lots of water, broken rocks
\Z

18: shallow conduit filled mud
!

19: less water, more muddy

20: o the concut fst o
*

24: not in the conduit
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Monitoring solute transport in a conduit

Georgetown
(a),\ﬂ'\) _@ g
i “‘»i\v\ .;:‘(: }

L -
N Field Site Kentucky
S o %
( Y 1{ 5 km
\-\ : SO —— |
W
w\.; \\
oy N

- Royal Sprlng \

}
|
Basin
== == Cane Run \Qexlogon '

Watershed @ NJ

Sawyer et al. (2015)

Salt water injection: 900 kg mixed with 3400 liter of water
Injection interval: 45 mins
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y (m)

Background Resistivity
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Sawyer et al. (2015)



Resistivity Time
Differences

% Change
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Sawyer et al. (2015)



Electrical resistivity (Ohm.m)

Monitoring water content in soll
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= Cheshire Clay (McCarter 1984)
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Samouelian et al. (2005)



Spindletop Farm Site

o O 1: higher elevation
B 6-12% slope
2. concave sideslope
6-12% slope
3: convex sideslope
2-6% slope
4: gently sloping
2-6% slope
5: flat footslope
0-2% slope

* Five ER lines( yellow), and each line was surveyed multiple times
during Sept.- Nov. 2011.



Spindletop Farm Site

Soil is thin and typically
consists of silt loam, silt
clay loam, and clay in
descending order.

Total 86 Capacitance probes (black dots) and data were collected weekly
during Sept 9. — Oct. 28 2011. The probes measure water content in top 100
cm with 10-cm intervals.



Time Lapse Resistivity: Site 1
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Differences: Site 1
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Top figure is inverted ER at time 1 and other figures

show relative difference of log-transformed ER
between other times and time 1.




Electrical Resistivity vs. Soil Moisture: Site 1

Average Electrical Resistivity

Average Moisture Content

Average Electrical Resistivity (Ohm-m)

Average Moisture Content (%)

Avg. Resistivity at 12 cm
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Time Lapse Resistivity: Site 3

311 ER: 10/02/11

311 ER: 10/15/11

311 ER: 11/12/11
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Differences: Site 3

= ER: 10/02/11

=N =N-F-F-N-N=-F-F-N-F-F-]
~RRFA RAPRR-m=

% difference
of Ln{ER)
between
1041511

d

an
10/02411

oo
b

% difference

‘ﬁ:_: I
e of Ln{ER)
npe between
om
g 102911
oo« and
noe 1002411
a4
E-’?ﬂl % difference
i of Ln{ER})
oo between
ooz
0 111211
oo« and
e 1002411
a4

Top figure is inverted ER at time 1 and other figures

show relative difference of log-transformed ER
between other times and time 1.




Electrical Resistivity vs. Soil Moisture: Site 3

Average Electrical Resistivity

Average Moisture Content
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ELECTRICAL RESISTIVITY METHOD FOR MARINE EXPLORATION

Thomas Brackman (on behalf of Markus Lagmanson, Advanced Geosciences, Inc.), Sr.
Geophysicist; Research Faculty Western Kentucky University, Bowling Green KY,
nearsurfacegeophysics@yahoo.com

Use of 2D Electrical Resistivity in marine applications will highlight case studies including
optimizing placement of horizontal well screens for water well intakes for the Florida
Oceanographic Societies Marine Park, mapping of geology adjacent to seawalls adjacent to a
waterfront canal system, determine dep to bottom in lacustrine environments, and investigation
of a planned utility tunnel stretch between the mainland and Fisher Island in Miami, FL.

Return to top
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